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Abstract. With both the electron-longitudinal optical phonon and the electron-surface 
optical (so) phonon interaction included, the temperature dependence of the effective mass 
and self-energy of a polaron in a polar crystal slab is investigated by means of the Lee-Low- 
Pines variation method. These quantities are calculated for GaAs as an example. It is found 
that both the effective mass and the self-energy will decrease with increasing temperature. 
In particular, for a very thin slab, the temperature dependence of the effective mass is nearly 
entirely determined by the SO phonon effect. 

1. Introduction 

Frohlich polarons have been the subject of continuous interest for several decades. In 
the past, most work has been devoted to the study of the ground-state energy and the 
effective mass of polarons at zero temperature. Recently, there has been renewed 
interest in the temperature behaviour of the properties of these polarons [l-81. 

The different assumptions about the mechanism of the electron-phonon interaction 
and the different methods applied in theoretical investigations have led to significantly 
different dependences of the polaron mass on temperature. In [9] the polaron energies 
were approximatley calculated using the Hartree method and the conclusion was that 
the polaron mass would decrease with increasing temperature. However, using the 
Gurari variation method, the contrary result was reached in [lo]. Until now, even though 
more factors have been taken into account and more perfect methods have been used, 
the conclusions have not been yet identical. For sufficiently low lattice temperatures, 
some theories 11-31 predicted a polaron mass that would decrease with increasing 
temperature, while other theories [4,5] led to a polaron mass that would increase with 
increasing temperature. 

The effective mass of the charge carriers in a crystal is usually determined by cyclotron 
resonance experiments. The experimental data for silver halides at low magnetic fields 
[ll] showed that the polaron mass increases with increase in the lattice or carrier 
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temperature. For cyclotron resonance measurements on GaAs-Gal -.Al,As het- 
erojunctions, it was reported in [12] that the effective mass of the polaron showed an 
anomalous increase with increasing temperature, i.e. the mass increased with increased 
temperature up to about 100 K and started to decrease for higher temperatures. It is 
obvious that different experiments also gave different results. 

Electron-optical phonon coupling plays an important role in determining the tem- 
perature characteristic of polarons [ 131. With the wide application of heterojunctions 
and superlattices to technology, the electron-phonon interaction has been theoretically 
investigated in 3~ systems [14, 151 as well as in 2D systems [7, 16, 171. However, to the 
best of our knowledge, only the temperature dependence of the virtual coupling of a 
quasi-free electron with bulk longitudinal optical (LO) phonons has been discussed. 

In [ 121, the magnetophonon resonance results yielded phonon frequencies sig- 
nificantly below the bulk LO values, which suggested that the dominant interaction of 
electrons would not be with the bulk LO phonons. Therefore the electron interaction 
with other phonon modes associated with the presence of the interface should also be 
taken into account. 

The first deduction of the Hamiltonian operators of the Frohlich polaron in a polar 
slab with the electron-surface optical (so) phonon interaction included was given in 
[18]. Then, in the zero-temperature limit, we and our collaborators [19] investigated the 
influence of the so mode effect on the polaron in a polar slab and found that the so mode 
effect would enhance the effective mass and self-energy of the polaron just as the LO 
mode would do. 

The purpose of this present paper is to study how the electron-phonon interactions 
affect the temperature dependence of the properties of a polaron in a polar crystal slab. 
In particular, for the first time, the electron-so phonon interaction is taken into account 
at finite temperatures. The effective mass and self-energy of the polaron as functions of 
temperature are derived by means of the Lee-Low-Pines [20] variation technique. 
Taking GaAs as an example, for an arbitrary slab thickness, we calculate the polaron’s 
mass and self-energy at various finite temperatures. The results show that the effective 
mass and self-energy will both decrease with increasing temperature. At any determined 
temperature, the electron coupling with so phonons will make contributions to the 
enhancement of the effective mass and self-energy and, with the slab getting thinner, such 
an effect will become more pronounced. In the ZD limit, the temperature dependence of 
the effective mass will be determined entirely by the so mode effect and not by the LO 
mode effect. 

The results deduced in this paper will be suitable for weakly and intermediately 
coupled polarons. 

2. Hamiltonian 

Consider a polar crystal slab with thickness 2d; the space at 121 s d is occupied by the 
crystal and at 121 > d is a vacuum. The slab is very thin and the size of the x-y plane is 
much larger than 2d. For simplicity, we assume that the effective-mass approximation 
is valid and the potential barrier at the slab surface is approximately infinite, i.e. the 
tunnelling of electrons through the surface is neglected. Then, we formulate the problem 
as the motion of an electron of mass m* in an infinite square-well potential of width 2d 
and have the Hamiltonian of the electron-phonon system as 
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H = H e  + H p h  + He-LO + H,so. (1) 

H e  = -(h2/2m*)d2/az2 + (h2/2m*)K2p 1z/ 6 d (2) 

The first term He is the Hamiltonian of the electron in the slab and given by 

where m* is the band mass of the electron, p and K p  respectively represent the position 
vector and the wavevector in the x-y plane for the electron. 

The second term in (1) is the phonon field Hamiltonian and is written as 

where a:,,(k) is the creation operator, a,,,(k) is the annihilation operator for the bulk 
LO phonon with frequency wLo and the two-dimensional wavevector k ,  bp(q) and bp(q) 
are the corresponding operators for the so phonon with frequency wsp and wavevector 
q. The phonon modes are specified by subscriptsp and m. The parity indexp, taking the 
value + and - , refers to the mirror symmetry with respect to the plane z = 0. The index 
m is the quantum number denoting the z component of the LO phonon wavevector. For 
even parity (p takes +), m is odd and, for odd parity (p takes -), m is even. We take N 
as the slab thickness in the unit of the lattice spacing constant a ,  i.e. set 2d = Nu. From 
the Brillouin zone boundary limitation: mn/2d 6 n/2a, m can be any integer within the 
range 1 G m 6 N/2. 

In the above equations, the phonon frequencies can be expressed in terms of the 
transverse optical (TO) phonon frequency wTo by 

4 0  = wio(EO/Ez) (4a) 

ogi = O + ~ [ ( E ~  + 1) T ( E ~  - 1) exp(-2qd)]/[(~, + 1) 3 (E, - 1) exp(-2qd)] 

where 
represents the phonon frequency us, asp  takes + or -.  

electron-so phonon interaction Hamiltonian and they are directly given in [MI: 

(4b) 
is the static dielectric constant, E, is the optical dielectric constant and wSt 

The last two terms in (1) represent, respectively, the electron-io phonon and the 

where 

B* = i[(4ne2/V)hwLo ( 1 / ~ ,  - 1 / ~ ~ ) ]  'I2 

C* = i[(2ne2/A)hw.ro ( E ~  - E,,)] lI2 
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1) exp( -2qd)l) 1/4 
(5e) 

(5f 1 

cosh(qz)/cosh(qd) + - ( E x  - 
G +  = 

( E ,  + 1) - ( E ,  - 1) exp(-2qd) ( E ~  + 1) - ( E ~  - 1) exp(-2qd)] 

sinh(qz)/sinh(qd) ( E ,  + 1) + ( E ,  - 1) exp(-2qd) 
( E ,  + 1) + ( E ,  - 1) exp(-2qd) ( e o  + 1) + ( E ~  - 1) exp(-2qd) 

G- = 

In the above equations, A and V are the surface area and the volume of the slab, 
respectively. 

To simplify the calculations, we first perform the unitary transformations twice to 
Hamiltonian (1) with 

After tedious but direct calculations, we obtain the transformed Hamiltonian H* 

H* = UT1 U;’HU1 U 2 .  (7) 
We still assume that, at finite temperatures, the successive virtual phonons in the field 
around the electron are emittedindividually , i.e. there is no interaction between different 
phonons. Therefore, we omit those terms including the factor [ a ~ , p a m , p b ~ b p ]  in H*.  

As shown in [12], the phonon frequencies will decrease with increasing temperature 
but, if the temperature is restricted to the range lower than the room temperature 
( T  < 300 K), the relative change 1 Am l/w in the frequency is only 1%. Then, we can take 
the phonon frequencies as approximately constants. In addition, because the electron- 
phonon interaction energies are much smaller than wLoh and w,h, we also omit them 
from the total energy of the phonons. With the considerations mentioned above, we 
assume that the eigenvalues of a+a and b+b in the phonon state at a finite temperature 
are given by the Planck distribution functions 

NI = (aL,p(k)am,p(k)) = [exp(wLOh/k,T) - 11-1 

N2 = (b i (q)bp(q) )  = [exp(wSph/kBT) - 11-l 

(Sa) 

(86 )  
where kB is the Boltzmann constant. 

At finite temperatures, the wavefunction of the phonon state can be chosen as 
1{Nm,Jk)}, {Nsp(q)}) ,  in which {Nm,p(k)} and {Nsp(q)},  respectively, represent the num- 
bers of L o  and so phonons. At last, the expected value of H* (equation (7)) referring to 
the phonon state is easily obtained: 

- 
H* = ({Nm,p (k)I, {NSp (q)llH* I{Nsp ((I)), {Nm,p (k)}). (9) 

3. Variation method 

According to the Lee-Low-Pinesvariation technique, if it is noted that the only preferred 
direction in the x-y plane is the direction of K p ,  we can introduce two parameters 77 and 
qz given by 
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(10) 

Inserting equation (10) into equation (9) and from 

6H*/6fm,p = dH*/df ; , p  = 6H*/dgp = dH*/dg,* = 0 

we determine the variation parametersf;,, and gp* as 

f ;,+ = { -B cos[(mn/2d)z]/[k2 + ( ~ X / ~ ~ ) ~ ] ~ / ~ } / [ ~ O J L O  + (h2/2m*) 

X (2N1 + l)lkI2 - (h2/m*)(1 - ql)Kp k] (11a) 

X (2N1 + l)lkI2 - (h2/m*)(1 - ql)K, *k ]  (1lb) 

x (2N2+ + 1) - (h2/m*>(1 - r 2 ) K p  - (I1 

X (2N2- + 1) - (h2/m*)(l  - q2)Kp * q] 

f G , -  = { -B  sin[(mn/2d)z]/[k2 + (mn/2d)2]1/2}/[hwLo + (h2/2m*) 

gT. = -C[~inh(2qd)/q]’/~ exp( -qd)G+/[hws+ + (h21q12/2m*) 

(Ilc) 

g? = -C[~inh(2qd)/q]l/~ exp( -qd)G-/[hws-  + (h21qI2/2m*) 

(1 14  

where N2+ and N2- represent the values of N 2  in (8b) corresponding to even parity (+) 
and odd parity (-), respectively. The parameters f,, , and g, can be easily expressed as 
the corresponding conjugate formulae of equations (1la)-( l ld) .  

In this paper, since we are interested only in slow electrons just as observed in 
experiments, we then set Kp = 0. Inserting equations (1la)-(lld) and their conjugate 
formulae into equation (lo), we calculate q l  and q2  by expanding the relevant formulae 
to the first power of Kp and obtain 

71 = aFB(z)/[l + aFB(z)l (12) 

where 

and 

x 3  dx  
Im = loffi [l  + (2N1 + l)x”l’[x’ + (mn/NauJ2]’ 
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x2 exp( -x) sinh x[cosh(xz/2d)/~osh(x/2)]~ 
IQ1 = 

x [ ( E , ,  + 1) - (E , ,  - 1 )  e~p( -x ) ] -~ /*  dx 

x2 exp( -x) sinh x[sinh(x~/2d)/sinh(x/2)]~ 
[ ( N U U , ~ ) ~  + x * ( ~ N ~ -  + J . ) ]~[(E~ + 1) + ( E ,  - 1) exp(-x)I31* 

X [ ( E ~  + 1) + ( E ~  - 1) e~p( -x ) ] - ' /~  dx. 

N z / 2  

IQ2 = Io 
In the above equations, the dimensionless (Y is the coupling constant for the electron- 
LO phonon interaction and is given by 

(Y = (m*e2/h2 U [ ) (  I/&, - I / E ~ )  

U? = 2m*wLo/h U$* = 2m*ws+/h. (15) 

(14) 

and the polaron wavevector U [  and us* are defined by 

In equation (13b), we also define the variable x = 2qd. 

4. Effective mass and self-energy 

At finite temperatures the variation minimum of H* (equation (9)) is just the effective 
Hamiltonian of the free polaron in a polar slab. Substituting equations (10)-(13) into 
equation (9) and considering q < 1 and q 2  < 1 as shown in our calculations, we get the 
effective Hamiltonian as 

(16) 

On the basis of the expansion of the self-energy correction of the polaron with respect 
to the small wavevector K p ,  we give a standard definition [21] for the polaron's effective 
mass, i.e. in equation (16) let 

h2Ki /2M* = (h2Ki /2m*)[1  - a F B ( z )  - aFs(z)]. 

Then, we obtain the effective mass as 

M *  = m * [ l  - (YF,(z)  - a F s ( ~ ) ] - '  =m*[ l  + aFB(2)  + a F s ( ~ > ] .  (17) 

In the zero-temperature limit, N 1  and N 2  (equations (8a) and (8b) )  will obviously tend 
to zero and then FB(z) and Fs(z) will also approach the values at zero temperature. So, 
such a definition of the temperature-dependent effective mass is adequate because there 
is no discrepancy between the two mass expressions at zero and finite temperatures [8]. 

In equation (16), Vi") ( 2 )  and V f )  (2) are the effective potentials induced respectively 
by the electron-Lo phonon and the electron-so phonon interaction. After straight- 
forward calcvlations, we obtain 
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+ E  N’2 sin2[(mn/2d)z] i n ( m n y j  1 
( m = 2 , 4 , .  (mn/2dI2 - U? 

vy) = - ~ ~ C O ~ ~ E ~ / ~ E ~ ’ ~ ( N ~ U ~ ) ( Z ~ ~  + Zp2) 

where 
N n f 2  exp( -x) sinh x[cosh(xz/Na)/cosh(x/2)]* 

= lo [ ( N U U ~ , ) ~  + x2(2N2+ + l ) ] [ (ep  + 1)- (E, - 1) exp( -~ ) ]~ / ’  

x [ ( E ~  + 1) - ( E ~  - 1) exp(-x)]-l/’ CIX 

(18c) 
exp( -x) sinh x[sinh(xz/Na)/sinh(x/2)]’ 

[ ( N U U ~ - ) ~  + x 2 ( 2 ~ ~ -  + I)][(&, + I)+ (E, - 1) exp(-x)l3/’ 

x [ ( E ~  + 1) + ( E ~  - 1) exp( -~ ) ] - l /~  dx. 

zp2  = j-oNz’2 

In order to calculate the average values of the effective mass and the self-energy in 
the slab, it is necessary to obtain the approximate wavefunction in the z direction. For 
this purpose, first we separate Heff (equation (16)) into two parts: 

Heff =H,  +HI 

where 

H ,  = -(h2/2m*)(t12/az2) + vi“’(.) + v~“’(z) (19) 

and Hl includes the other terms in He, (equation (16)). In HI, only the effective mass 
M *  relates to the coordinate z , but its change with z is so small that we can approximately 
take it as a constant independent of z .  Therefore, the motion in the x-y plane can be 
separated from the motion along the z direction and H, (equation (19)) will represent 
the Hamiltonian of the electron-phonon system in the z direction. In addition, for the 
III-V compounds such as GaAs, the effective potentials VY’(z)  and V y ’ ( z )  in H, 
(equation (19)) are also very small; consequently they can be neglected compared with 
the kinetic energy of the electron along the z direction. Hence, we still consider the 
electron moving approximately in an infinite square-well potential along the z direction 
and the corresponding eigen-equation can be expressed as 

- (h2/2m*)(a ’ / d z 2 ) q  [ ( z )  = El q [ ( z )  Iz/ 6 d. (20) 
From the well known solution of equation (20), we have the wavefunction q l ( z )  of the 
electron along the z direction as 

where 1 is the quantum number and is taken as a positive integer. For the conduction 
electron, 1 will be limited by the band width: 

El = l2ti2n2/8m*d2 < n2h2/2m*a2, i.e. 1 s 2d/a = N. 

Thus the expected value of the effective mass M* is expressed by 
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in which 

1 -- x2 exp( -x) sinh x 
( z Q 2 )  = 'lo [(Naus-)2 + (2N2- + 1)x2I3 [sinh(x/2)I2 

- 1 + (12n2 sinh x)/[x(x2 + 12n2)] 
X dX. 

[ (E , ,  + 1) + ( E %  - 1) e x p ( - ~ ) ] ~ / * [ ( ~ ~  + 1) + ( E ~  - 1) exp(-x)]l/* 

By calculating the expected values of the induced potentials V y )  and Vi") referring to 
I Q , / ( Z ) ) ,  we obtain the self-energies E: and E: which come, respectively, from the bulk 
LO and so phonon contributions. The results are 

E: = ( Q , l ( Z )  I v p  (2) I Q, 

+ -  1 1 In F) 1 
2 (ln)2(2N1 + 1) - ( N U U / ) 2  

where 
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Table 1. Characteristic parameters of crystal GaAs. All the parameters are taken from [22] 
except for the lattice constant a which is taken from [23]. mo is the free-electron rest mass. 

0.0681 36.70 33.83 0.0657 5.654 12.83 10.9 

exp( -x) sinh x 
[(NauS+)’ + x2(2N2+ + 1)] 

(Zp1) = 

1 
X dx  

[ ( E =  + 1) - ( E ,  - 1) e x p ( - ~ ) ] ~ / ~ [ ( ~ ~  + 1) - ( E ~  - 1) exp(-x)]’/2 

(23c) 
exp( -x) sinh x 

[(Nuus-)’ + x2(2Nz- + l ) ]  

1 
X dx. 

[(cp + 1) + ( E ,  - 1) e x p ( - x ) ~ ~ / ~ [ ( ~ g  + 1) + (c0 - 1) e x p ( - ~ ) ] ” ~  

In these equations, a, uI and us* are defined, respectively, by equations (14) and (15). 

5. Results and discussion 

According to the equations deduced in 8 4 and taking GaAs as an example, for the 
ground state ( I  = 1) at different temperatures, we calculate the effective mass and the 
self-energies of the polaron in a polar slab with arbitrary thickness. For slow electrons 
which are usually observed in experiments, we set K p  -- 0. The crystal characteristic 
parameters are related to the temperature [22], but within the temperature range (less 
than room temperature) considered in this paper their changes with temperature are 
very small. Therefore, in our calculations, we assume these parameters are constant 
and take their values approximately as those at low temperatures. Table 1 gives the 
characteristic parameters of crystal GaAs. 

In this paper, we obtain the effective mass of the polaron defined as 

M* = m*[1 + ( & F B )  + ( a F s ) ]  

where (aFB) and (aFs) are due to interactions of the electron with bulk LO and SO 
phonons, respectively. For different slab thicknesses, the variations in (aFB) and (aFs) 
with increasing temperature are shown in figure 1. Only when the slab is very thin would 
the so phonon effect (aF,) be much stronger than the LO phonon effect and become the 
primary factor in determining the effective mass. With increase in the slab thickness, the 
so mode contribution will decrease rapidly and the LO phonon effect (aFB) will become 
stronger and give the dominant contribution to the mass as the slab is relatively thick 
(N  > 50). 

Both (aFB) and (aF,) will decrease with increasing temperature. It is well worth 
noting that, the thinner the slab is, the more marked the change in the so phonon effect 
with the temperature will be. As N becomes relatively large, such a change in (aFs )  will 
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0.0691 

Figure 1. (aFB) (- - -) and (aFs)  (-) as func- 
tions of temperature T for different slab thick- 
nesses N. mass). 

Figure 2. Temperature dependence of the effec- 
tive mass M*/mo (m, is the free-electron rest 

nearly disappear. However, for the LO phonon effect the result turns out to be contrary 
to the so mode effect; as the slab becomes thicker the change in (aFB) with temperature 
will become increasingly marked. 

Be& determined by the sum of ( aFs) and (aFB), as described in figure 2, the effective 
mass M*/mo monotonically decreases with increase in temperature. In particular, the 
most obvious change in the mass will appear within the temperature range 100-250 K. 
On increase in the temperature, the uncorrelated motion of phonons becomes an 
important factor and the coherence between the electron motion and the phonon motion 
gets weaker. It results in the weakness of the electron-phonon interactions, i.e. in a 
decrease in the effective mass with increasing temperature. 

In [12] an anomalous increase in the polaron mass with temperature was obtained 
and it was also interpreted as being caused by the temperature dependence of the 
screening of the electron-phonon interaction. From an explicit calculation of the polaron 
mass for an arbitrary temperature with the inclusion of full dynamicai screening, in [7] 
a temperature behaviour was theoretically obtained which agreed qualitatively with the 
data in [ 121 but the results at 100 K are quantitatively a factor of almost 2 smaller than 
observed experimentally. 

The experiment results in [ 121 also suggested that the dominant interaction of elec- 
trons would be not with the bulk LO phonons, and some phonon modes associated with 
the presence of the interface should be considered. With the so mode included in this 
paper, we find that, for a very thin slab, the so mode effect is much greater than the 
bulk LO mode effect (compare the curves for N = 4 in figure l ) ,  i.e. the temperature 
dependence of the effective mass is really attributed to the attractive action of so 
phonons. In the 2~ limit (see the curve for N = 4 in figure 2), we quantitatively obtain 
the same result as that reported in [12] but, since we have not taken the strong screening 
of the electron-phonon interaction into account, there will be no anomalous increase in 
the effective mass at low temperatures in our results. 

Figure 3 depicts how the effective mass changes with the slab thickness at finite 
temperatures. As N tends to zero, the so phonon effect enhances the mass greatly and, 
with a slight increase in N ,  such an effect is weakened rapidly and the mass also decreases 
swiftly. For further increase in N ,  the effective mass will gently approach a stable value 
determined by the LO phonon effect. Owing to the temperature dependence of the LO 
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3 50 

---__ -----____ 
1 so 

mode action, for infinite N ,  the higher the finite temperature is, the lower the stable bulk 
value will be. 

The polaron self-energy consists of two parts: E: and E:,  which are induced respect- 
ively by the electron-Lo phonon interaction and the electron-so phonon interaction. 
When the temperature increases, the irregular motion of the ions in crystals will become 
more violent; consequently the number of polar phonons will decrease greatly and 
therefore the interactions between electrons and phonons will be weakened. Therefore, 
the absolute values of both E: and E: will decrease with increase in temperature. Figure 
4 shows a comparison of the temperature behaviour of IEs I (full curves) and IE: 1 
(broken curves). For a very thin slab, the changes in IE: 1 and ]E:  1 with temperature 
have the same orders of magnitude. However, when the slab becomes thick, the change 
in IE: 1 with temperature will disappear rapidly and for IE; 1 there will be no obvious 
difference in the temperature behaviour between the different slabs. So, only for a very 
thin slab will the so phonon action make a large contribution to the temperature 
dependence of the self-energy and for a thick slab the temperature behaviour will mainly 
depend on the LO phonon effect. Therefore, just as shown in figure 5 ,  it is obvious that 
the variation in the total self-energy /Er  1 + /E:  1 with temperature will be greater in a 
thin slab than in a thick slab. 

Figure 6 describes the total self-energy as functions of the slab thickness at different 
temperatures. In the limit when N approaches zero, the self-energy increases quickly 
owing to the enhancement action of so phonons. When Nbecomes large, the self-energy 
will decrease swiftly with rapid weakening of the SO phonon effect. As N tends to infinity, 
the self-energy will approach the value of IE! I at finite temperatures. 
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